

Slice knots \& Ruot concondance imsund berg. github. io / concordance

Apr 4,2023

Logistics: currently being streamed on zoom, + reconded
-no audience shown \leftarrow messed this up,

- behind passuond online audience was visible
who are we?
\(\left.\begin{array}{l}An she/her \\
Isaac they/them \\
Hyemhee she/her \\

(Haeli)\end{array}\right\}\)| presumably |
| :--- |
| irrelevant, |
| but feel |
| free to |
| duzen us |
| in German |

Who are you? Core tenget andience: masters + adv bachelor
Also welcome: postdocs, other researchers (but note cove audience)
ie. shidents: you ave the target audience so ask us questions

Where are you? Primarily attending in-person

- lectures streanued / recorded to accommodah illness / tavel/.
Small group of non-Bonn students (researchers.
- encouraged to participate online, incl. Hes.

What do you know? Point-set topology, definition of manifold
Basic alg-topology: π_{1}, covering spaces, fionversy, colum.
Pe' duality, 4 CT .
Classical knot theory will be recalled as needed.

What will we do? (See list of topics on course welosite)
Closest analogne: A survey of classical knot concondent ce, Living stor
[To day will be necessanty sketchy]
A knot is an embedding $S^{1} \longrightarrow S^{3}$
wild knots \rightarrow top (ie. loomed out image)
(-) $-ง-\cdots$, k in finite conn. sum of trefoils

$$
l l=0
$$

$$
[\text { Gauss'1833] }
$$

$$
l k=1
$$

$$
l k=0
$$

 ordered, oriented.

Warning:
subsets vs maps

Which codimensions? Codim one: Schoen in DIFS problem
more on high D knot theory.
see Ranchi book.
$K: S^{k} c S^{n}$ mentored if
 in the approp. category

There is a lot to say abt classical knot theory, but we will not go into it; r rather, we will recall when needed.
One highlight though:

Dehin surgery on a knot:
Input: $K \subseteq S^{3} k$ not

$$
, \frac{p}{q} \in \mathbb{Q} \cup\{\infty\}
$$

$\operatorname{lk}($ long, $k)=0$
Note: each $\frac{p}{q}$ corr to a simple closed curve on atoms $S^{1} \times S^{1}$
"p times along meridian + q times along long".
So $\infty=\frac{1}{0} \leadsto$ meridian

$$
S_{\frac{p}{q}}^{3}(K):=\underset{(p, q) \text { curve }}{\left(S^{3} \backslash \vee K\right)} u^{0=\frac{0}{1} \underset{S^{\prime} \times D^{2}}{\longleftrightarrow} \times 2 D^{2}}
$$

Lickonsh-Wallace' 1960 s
Framed link Dehnsmgery closed, connected, kirby '70s. oriented 3 nufed'/homer + blow up/doun
So, sholying Rnots/einks gives a method to study all 3 mfed
Artin' 1926: Studied $\Sigma \cdot S^{2} c S^{4}$

$$
\text { s.t. } K=\sum_{\text {nontivial }}^{\cap} s^{3}
$$

Sucha $k n o t$ is called \uparrow slice i.e. $K: S^{n} \hookrightarrow S^{n+2}$
DIFF, PL,TOP

3 mflels $\leftrightarrow s$ classical knot theory simutanfy 4 -wfeds \leadsto slice knots.

Diff. From classical case: Group str.

$K \simeq \underset{\operatorname{sim} / \text { FOP }}{ }$, or $K \& J$ ave ${ }^{\operatorname{sm}}$ TOP concordant if they cobound an annulus in $S^{3} \times[0,1]$

$$
\begin{aligned}
& \underbrace{}_{k \# J}\left(\text { knots } / \operatorname{sim}_{\text {hop conc }}, \#\right)=: 6^{\mathrm{sm} / \mathrm{h}} \\
& {[k]=0 \in e^{\mathrm{km} / \mathrm{hop}}} \\
& \Longleftrightarrow K \text { is } \operatorname{smp}_{\text {top }} \text { slice }
\end{aligned}
$$

first obstructions to sliceness

Every hasa seyfert surface $F \subseteq S^{3}$
Seifert form $H_{1}(F) \times H_{1}(F) \rightarrow \not / L$

$$
(a, b) \longmapsto l k\left(a, b^{+}\right)
$$

Sefert matrix ${ }_{b}\left[\begin{array}{cc}-1 & 1 \\ 0 & n \\ b^{+}\end{array}\right]=: V$

$K \operatorname{alg}$ slice if $\phi(k)=0$
Levine '1969: $\quad y \cong \Pi L^{\infty} \oplus \Pi / 2^{\infty} \oplus \Pi / /_{4}^{\infty}$

Question: Alg slice \Rightarrow slice for 1-knots?
Answer: No [Casson-Gordon'1975]

$$
\begin{aligned}
& \text { Definitely no [Cochran-Orr-Teichner'2003] } \\
& \text { Solvable filtration } \\
& \begin{array}{l}
\text { Definitely no } \quad[\text { Cochran-Or-Teichnev } \\
\text { Solvable dilation }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { aïg } \\
\text { she }
\end{array}\right\} \quad\left\{\begin{array}{l}
\text { n' } \\
\text { CGiurts } \\
\text { vemush }
\end{array}\right.
\end{aligned}
$$

COT, Cochran-Harvey-Leidy'O9: $\sigma_{n} / \sigma_{\phi_{n-5}} \geq 7^{\infty} \forall n$.
forgot to mention them forgot to men on them in lectave, sorry? using $L^{(2)}$-invts of Wolfgang
Freedman + Quinn '1980's
Garoufalidis-Teichnev'2004:

$$
\begin{aligned}
\Delta_{k}(t)=1 \Rightarrow & k \text { TOPslice } \\
& \mathbb{U} \in \bigcap_{n \in \frac{1}{2} \pi} \mathscr{H}_{n}
\end{aligned}
$$

+Donaldson: ヨTOP slice knots that are not sm. slice.

Combinatorial obstr. To sm slicing:

- contact topology (slice-Bennequin inequality)
- Khovanor homology (s-invt)
cf: Lisa's proof.
Indeed $\tau \geq B_{0} \supseteq B_{1} \supseteq \ldots$
Bipolar filtration [Cochran-Havrey-Horn' 13]
$B_{n} / B_{n+1} \supseteq 7 L^{\infty} \forall n \quad[$ Cha -Kim' 2021$]$
using $L^{(2)}$-invts + obstr. from Heegaand-Hloev honvilogy.
Planfor course: talk asst all of the above alg conc., CG, COT, Alexpoly, Dovaldsm, slice-Bénnequin, Khotanov, Heegaand -
[Wrap up of summary w. some reasons we like slicing Rusts (links]

1. Given K TOPslice, not smslice \longrightarrow exotic sm. str. on \mathbb{R}^{4}. ie. not differ. hostdsmstw.
Note: [Morse' 77 , Stalling ;'62] $\mathbb{R}^{n \neq 4}$ has a unique sm. str.
Proof: K TOP slice $\Rightarrow \phi: X_{0}(k) \xrightarrow{\text { TOP }} \mathbb{R}^{4} \subseteq S^{4} \quad \begin{gathered}\text { trace } \\ \text { embed }\end{gathered}$
$\mathbb{R}^{4} \backslash \phi\left(X_{0}^{0}(k)\right)$ connected, noncompact 4-mfld

$$
\|[\text { Quinn'1982] }
$$

\exists sm str. extending the str. on $\partial(\underbrace{\phi\left(X_{0}(k)\right)}_{\text {inherited }})$
Give together to get R,
sm. str.
a smoothing of \mathbb{R}^{4}.
 $\Rightarrow K \sin s h i c e=E$
2. "Surgery sequence holds in dimension 4 for all π_{1} " i
all" good boundary links" are TOP slice
 with free π_{1} of disc comp. analogue of $\Delta_{k}(t)=1$.
3. Strategy to disprove Bm 4D Poincave' conjectave [Freedman-Gompf-Morrison-Walker'10] $K \subseteq S^{3}$. Find espy 4-ball W w. $d W \cong S^{3}$ s.t. K sm. slice in W but not in \mathbb{B}^{4}.

Plan: use the s-inut.
Apply to move general 4-mflds? [Manolescu-Piccirillo'21]

How will we do it?

- switch lecturers based on topics.
next weete: Isaac
- problem session, Monday 10-11, MPIM B27.
- Discord, Nextclond, Zoom, pw: sliceknots
- Anonymous feedback form on website - all feedback welcome in general.
- Homework even week
- Oral exam for Bonn sta dents: definitions, examples. HW problems

